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Abstract
We define and study multivariate sine and cosine functions, symmetric with
respect to the alternating group An, which is a subgroup of the permutation
(symmetric) group Sn. These functions are eigenfunctions of the Laplace
operator. They determine Fourier-type transforms. There exist three
types of such transforms: expansions into corresponding sine-Fourier and
cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms,
and multivariate finite sine and cosine transforms. In all these transforms,
alternating multivariate sine and cosine functions are used as a kernel.

PACS numbers: 02.10.Gd, 02.20.−a, 02.30.Gp, 02.30.Nw, 02.60.Lj

1. Introduction

In mathematics and mathematical physics, we very often meet functions on the Euclidean
space En which are symmetric or antisymmetric with respect to the permutation (symmetric)
group Sn. For example, such functions describe collections of identical particles. Symmetric
and antisymmetric solutions appear in the theory of integrable systems. Characters of finite-
dimensional irreducible representations of the group GL(n, C) and of the group U(n) are
symmetric functions. One meets symmetric and antisymmetric functions in the quantum
theory of many-particle systems [1–3].

Appearance of (anti)symmetric functions leads to appearance of (anti)symmetric special
functions. The book [4] deals with symmetric (with respect to Sn) polynomials. Symmetric
and antisymmetric multivariate exponential functions were studied in [5]. Symmetric and
antisymmetric multivariate sine and cosine functions were researched in [6]. In [5, 6],
symmetry and antisymmetry are considered with respect to the symmetric group Sn.

However, there exists a symmetry which is so important as the symmetry with respect to
the symmetric group Sn. It is the symmetry with respect to the alternating group An which
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is an invariant subgroup of Sn of index 2 (that is, the group Sn/An has two elements). The
alternating group An consists of transformations w ∈ Sn with det w = 1, that is, An consists of
even permutations of Sn. The group An is a subgroup of the rotation group SO(n) (note that
Sn does not belong to SO(n)). The group An is simple, that is, it has no invariant subgroups.

In [7], we studied multivariate exponential functions symmetric with respect to the group
An. We call these functions alternating multivariate exponential functions. The aim of this
paper is to describe and to study multivariate sine and cosine functions symmetrized by the
alternating group An and the corresponding Fourier-type transforms. We call these functions
alternating multivariate sine and cosine functions and denote them by SINλ(x) and COSλ(x),
respectively, where λ = (λ1, λ2, . . . , λn) ∈ R

n, x = (x1, x2, . . . , xn)) ∈ R
n.

Alternating multivariate sine and cosine functions are connected with symmetric and
antisymmetric multivariate sine and cosine functions studied in [6]. In fact, this connection is
the same as the connection of the sine and cosine functions of one variable with the exponential
function of one variable (see section 4).

We may consider three types of alternating multivariate sine and cosine functions: (a)
functions SINm(x) and COSm(x) with m = (m1,m2, . . . , mn),mi ∈ Z, which determine
Fourier series expansions in alternating multivariate sine and cosine functions, respectively;
(b) functions SINλ(x) and COSλ(x) with λ = (λ1, λ2, . . . , λn), λi ∈ R, which determine
integral multivariate Fourier transforms; (c) functions SINλ(x) and COSλ(x), where x =
(x1, x2, . . . , xn) take a finite set of values; they determine multivariate finite sine and cosine
transforms.

Functions (b) are symmetric with respect to elements of the alternating subgroup An

of the permutation group Sn. Moreover, the function SINλ(x) is antisymmetric and the
function COSλ(x) is symmetric with respect to change of a sign of any coordinate xi . That is,
symmetries of the functions (b) are described by the extended alternating group Ãn = An×Zn

2 ,
where Zn

2 is a product of n copies of the group Z2 of changes of a sign.
Symmetries of functions (a) are described by a wider group, since sine and cosine

functions of one variable sin 2πmx, cos 2πmx,m ∈ Z, are invariant with respect to shifts
x → x + k, k ∈ Z. Symmetries of functions (a) are described by elements of the extended
affine alternating group Ãaff

n which is a product of the groups An, Tn and Zn
2 , where Tn consists

of shifts of En by vectors r = (r1, r2, . . . , rn), rj ∈ Z. A fundamental domain F
(
Ãaff

n

)
of the

group Ãaff
n is a certain bounded set in R

n.
The functions (a) and (b) are solutions of the Laplace equation on the Euclidean space En

or on the corresponding fundamental domain.
Functions on the fundamental domain F

(
Ãaff

n

)
can be expanded into series in the functions

(a). These expansions are an analogue of the usual sine and cosine Fourier series for functions
of one variable. Functions (b) determine symmetrized sine and cosine Fourier integral
transforms on the fundamental domain F(Ãn) of the extended alternating group Ãn = An×Zn

2 .
This domain consists of points x ∈ En such that x1, x2 � x3 � x4 � · · · � xn � 0, where
x1, x2 � x3 means that x1 � x3 and x2 � x3.

Functions (c) are used to determine symmetric (with respect to An) finite (that is, on a
finite set) trigonometric multivariate Fourier transforms. These transforms are given on grids
consisting of points of the fundamental domain F

(
Ãaff

n

)
.

The discrete Fourier transforms, determined by (anti)symmetric multivariate sine and
cosine functions, studied in [6], and by alternating multivariate sine and cosine functions,
studied in this paper, have a number of practically useful properties. In particular, continuous
extension of the discrete transforms smoothly interpolate digital data in any dimension.
Examples show that relative to the amount of available data, these transforms provide much
smoother interpolation than the conventional Fourier transforms.
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Symmetric and antisymmetric multivariate trigonometric functions, studied in [6], satisfy
certain boundary conditions (antisymmetric trigonometric functions vanish on the boundary
of the corresponding fundamental domain and the derivative of symmetric trigonometric
functions with respect to the normal to the boundary of the fundamental domain vanishes on
the boundary). This means that smooth functions, which are expanded in these functions, have
to satisfy these conditions, that is, not each smooth function can be expanded in (anti)symmetric
multivariate trigonometric functions. Alternating multivariate sine and cosine functions satisfy
no boundary conditions and any smooth function can be expanded in these trigonometric
functions.

(Anti)symmetric multivariate sine and cosine functions, considered in [6], as well as
alternating multivariate sine and cosine functions, studied in this paper, are closely related
to symmetric and antisymmetric orbit functions defined in [8, 9] and studied in detail in
[10, 11]. These orbit functions are connected with the Dynkin–Coxeter diagrams of semisimple
Lie algebras of rank n. Discrete orbit function transforms, corresponding to Dynkin–Coxeter
diagrams of low rank, were studied and exploited in rather useful applications (see [12–18]).
Clearly, our alternating multivariate sine and cosine transforms can be applied under solution
of the same problems, that is, of the problems formulated on grids or lattices. But alternating
multivariate sine and cosine functions are simpler than orbit functions.

Our exposition depends on properties of the alternating group and its extensions. We
also use properties of semideterminants, which are closely related to determinants and
antideterminants. The determinant det(aij )

n
i,j=1 of an n × n matrix (aij )

n
i,j=1 is defined

as

det(aij )
n
i,j=1 =

∑
w∈Sn

(det w)a1,w(1)a2,w(2) · · · an,w(n)

where Sn is the permutation (symmetric) group of n symbols 1, 2, . . . , n, the set
(w(1), w(2), . . . , w(n)) means the set w(1, 2, . . . , n), and det w denotes a determinant of
the transform w, that is, det w = 1 if w is an even permutation and det w = −1 otherwise.
Along with the determinant, we use the antideterminant det+ of the matrix (aij )

n
i,j=1 which is

defined as a sum of all summands entering into the expression for a determinant, taken with
the sign +,

det+(aij )
n
i,j=1 =

∑
w∈Sn

a1,w(1)a2,w(2) · · · an,w(n) =
∑
w∈Sn

aw(1),1aw(2),2 · · · aw(n),2.

For the semideterminant sdet of a matrix (aij )
n
i,j=1 we have

sdet(aij )
n
i,j=1 = 1

2

(
det(aij )

n
i,j=1 + det+(aij )

n
i,j=1

)
.

Clearly,

sdet(aij )
n
i,j=1 =

∑
w∈An

a1,w(1)a2,w(2) · · · an,w(n) =
∑
w∈An

aw(1),1aw(2),2 · · · aw(n),n. (1)

The main property of semideterminants is that they are not changed under application to rows
or to columns of the corresponding matrices, a permutation w ∈ An. But they are not invariant
under application to rows or to columns permutations w ∈ Sn such that det w = −1.

2. Alternating multivariate sine and cosine functions

In this section, we introduce a new type of functions symmetric with respect to the alternating
group An. We call these functions the alternating multivariate sine and cosine functions. They
are studied in the forthcoming sections.
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An alternating multivariate sine function SINλ(x) of x = (x1, x2, . . . , xn) is defined as
the function

SINλ(x) ≡ SIN(λ1,λ2,...,λn)(x1, x2, . . . , xn) := sdet(sin 2πλixj )
n
i,j=1

≡
∑
w∈An

sin 2πλ1xw(1) sin 2πλ2xw(2) · · · sin 2πλnxw(n)

=
∑
w∈An

sin 2πλw(1)x1 sin 2πλw(2)x2 · · · sin 2πλw(n)xn, (2)

where (w(1), w(2), . . . , w(n)) means the set w(1, 2, . . . , n), and λ = (λ2, λ2, . . . , λn) is a set
of real numbers, which determines the function SINλ(x).

A special case of the alternating multivariate sine functions is when λi are integers; in this
case we write (m1,m2, . . . , mn) instead of (λ1, λ2, . . . , mn),

SIN(m1,m2,...,mn)(x) = sdet(sin 2πmixj )
n
i,j=1, mi ∈ Z.

An alternating multivariate cosine function COSλ(x) of x = (x1, x2, . . . , xn) is defined
as the function

COSλ(x) ≡ COS(λ1,λ2,...,λn)(x1, x2, . . . , xn) := sdet(cos 2πλixj )
n
i,j=1

≡
∑
w∈An

(det w) cos 2πλ1xw(1) cos 2πλ1xw(2) · · · cos 2πλ1xw(n)

=
∑
w∈An

(det w) cos 2πλw(1)x1 cos 2πλw(2)x2 · · · cos 2πλw(n)xn. (3)

The expression (1) for the semideterminant sdet does not change under applying to rows
or to columns a permutation from An. This means that for any permutation w ∈ An we have

SINwλ(x) = SINλ(x), SINλ(wx) = SINλ(x), (4)

COSwλ(x) = COSλ(x), COSλ(wx) = COSλ(x). (5)

Therefore, it is enough to consider only alternating sine and cosine functions SINλ(x) and
COSλ(x) with λ = (λ1, λ2, . . . , λn) such that

λ1, λ2 � λ3 � · · · � λn,

where λ1, λ2 � λ3 means that λ1 � λ3 and λ2 � λ3. Such λ are called semidominant. The
set of all semidominant λ is denoted by De

+. Below, considering alternating sine and cosine
functions we assume that λ ∈ De

+.
Alternating sine and cosine functions are related to symmetric and antisymmetric

multivariate sine and cosine functions sin+
λ(x), sin−

λ (x), cos+
λ(x), cos−

λ (x) studied in [6]. They
are determined by the formulae

sin+
λ(x) = det+(sin 2πλixj )

n
i,j=1, sin−

λ (x) = det(sin 2πλixj )
n
i,j=1,

cos+
λ(x) = det+(cos 2πλixj )

n
i,j=1, cos−

λ (x) = det(cos 2πλixj )
n
i,j=1,

where det+ is the antideterminant of the corresponding matrix, and λ and x are such as in
(2). A connection of the functions SINλ(x) and COSλ(x) with symmetric and antisymmetric
multivariate sine and cosine functions will be considered in section 4.
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3. Extended affine alternating group and fundamental domains

In order to study symmetries of alternating multivariate sine and cosine functions, we introduce
in this section the extended affine alternating group and the extended alternating group.
Fundamental domains of these groups in the n-dimensional Euclidean space are derived.

We have seen (see (4) and (5)) that the functions SINλ(x) and COSλ(x) are symmetric
with respect to the alternating group An. However, these functions are symmetric with respect
to a wider group.

The sine and cosine functions of one variable are symmetric with respect of the operation
ε of change of coordinate sign,

ε sin 2πry := sin 2πr(−y) = − sin 2πry, ε cos 2πry = cos 2πry.

This symmetry is reflected in properties of the functions SINλ(x) and COSλ(x). Let εi denote
the operation of change of a sign of the coordinate xi . One can see from the expressions (2),
(3) for SINλ(x) and COSλ(x) that

SINλ(εix) = −SINλ(x), COSλ(εix) = COSλ(x). (6)

We denote the group generated by changes of coordinate signs of x = (x1, x2, . . . , xn) by Zn
2 ,

where Z2 is the group of changes of a sign of one coordinate.
The group Ãn = An×Zn

2 (a direct product of An and Zn
2 ) is called the extended alternating

group. It is a group of symmetries for the functions SINλ(x) and COSλ(x).
We have the same symmetries under changes of signs in the numbers λ1, λ2, . . . , λn. In

order to avoid these symmetries, we may assume that all coordinates x1, x2, . . . , xn and all
numbers λ1, λ2, . . . , λn are non-negative.

The functions SINm(x) and COSm(x) with integral m = (m1,m2, . . . , mn) admit
additional symmetries related to the periodicity of the sine and cosine functions sin 2πry

and cos 2πry, r ∈ Z, y ∈ R. These symmetries of SINm(x) and COSm(x) are described by
the discrete group of shifts in the Euclidean space En by vectors

r ≡ r1e1 + r2e2 + · · · + rnen, ri ∈ Z,

where e, e2, . . . , en are the unit vectors in directions of the corresponding coordinate axes. We
denote this group by Tn. We have

SINm(x + r) = SINm(x), COSm(x + r) = COSm(x).

Permutations of An, the operations εi of changes of coordinate signs, and shifts of Tn

generate a group which is denoted as Ãaff
n and is called the extended affine alternating group.

(The group generated by permutations of An and by shifts of Tn generate a group which is
denoted as Aaff

n and is called the affine alternating group). Thus, the group Ãaff
n is a product

of its subgroups,

Ãaff
n = An × Zn

2 × Tn = Ãn × Tn,

where Tn is an invariant subgroup, that is, wtw−1 ∈ Tn and εi tε
−1
i ∈ Tn for w ∈ An, εi ∈

Z2, t ∈ Tn.
An open connected, simply connected set F ⊂ R

n is called a fundamental domain for
the group Ãaff

n (for the group Ãn) if it does not contain equivalent points (that is, points x and
x ′ such that x ′ = gx, where g is an element of Ãaff

n or Ãn, respectively) and if its closure
contains at least one point from each Ãaff

n -orbit (from each Ãn-orbit). Recall that an Ãaff
n -orbit

of a point x ∈ R
n is the set of points wx,w ∈ Ãaff

n . Since Ãaff
n contains the infinite subgroup

Tn, an Ãaff
n -orbit is an infinite set of points. The group Ãn is finite and thus Ãn-orbits are finite

sets of points.

5
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Since An consists of permutations w such that det w = 1, the set De
++ of all points

x = (x1, x2, . . . , xn) such that

x1, x2 > x3 > · · · > xn > 0, (7)

where x1, x2 > x3 means that x1 > x3 and x2 > x3, is a fundamental domain for the group Ãn

(we denote it as F(Ãn)). The set of points x = (x1, x2, . . . , xn) ∈ De
++ such that

1
2 > x1, x2 > x3 > · · · > xn > 0 (8)

is a fundamental domain for the extended affine alternating group Ãaff
n (we denote it as F

(
Ãaff

n

)
).

As we have seen, the multivariate alternating sine and cosine functions SINλ(x) and
COSλ(x) are invariant with respect to the alternating group An and behave according to
formula (6) under changes of coordinate signs. This means that it is sufficient to consider
these functions only on the closure of the fundamental domain F(Ãn), that is, on the set De

+
of points x such that

x1, x2 � x3 � · · · � xn � 0.

Values of these functions on other points are received by using symmetries.
Symmetry of SINm(x) and COSm(x) with integral m = (m1,m2, . . . , mn) with respect

to the extended affine alternating group Ãaff
n ,

SINm(wx + r) = SINm(x), COSm(wx + r) = COSm(x)w ∈ An, r ∈ Tn, (9)

SINm(εix) = −SINm(x), COSm(εix) = COSm(x), εi ∈ Z2, (10)

means that we may consider these functions on the closure of the fundamental domain F
(
Ãaff

n

)
,

that is, on the set of points
1
2 � x1, x2 � x3 � · · · � xn � 0.

Values of these functions on other points are obtained by using relations (9) and (10).

4. Relation to symmetric and antisymmetric sine and cosine functions

The alternating multivariate sine and cosine functions SINλ(x) and COSλ(x) are related
to symmetric and antisymmetric multivariate sine and cosine functions sin+

λ(x), sin−
λ (x),

cos+
λ(x), cos−

λ (x) studied in [6].
It follows from the definitions of alternating and symmetric and antisymmetric multivariate

sine and cosine functions that for λ such that λ1 > λ2 > λ3 > · · · > λn we have

sin−
λ (x) = SINλ(x) − SINr12λ(x), sin+

λ(x) = SINλ(x) + SINr12λ(x),

cos−
λ (x) = COSλ(x) − COSr12λ(x), cos+

λ(x) = COSλ(x) + COSr12λ(x),

where r12 means the permutation of λ1 and λ2. It follows from here that

SINλ(x) = 1
2 (sin+

λ(x) + sin−
λ (x)), COSλ(x) = 1

2 (cos+
λ(x) + cos−

λ (x)), (11)

SINr12λ(x) = 1
2 (sin+

λ(x) − sin−
λ (x)), COSr12λ(x) = 1

2 (cos+
λ(x) − cos−

λ (x)). (12)

It is directly derived from these formulae that

(
sin+

λ(x)
)2 − (sin−

λ (x))2 = 4SINλ(x)SINr12λ(x),

6
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cos+

λ(x)
)2 − (cos−

λ (x))2 = 4COSλ(x)COSr12λ(x),(
sin+

λ(x)
)2

+ (sin−
λ (x))2 = 2(SINλ(x))2 + 2(SINr12λ(x))2,(

cos+
λ(x)

)2
+ (cos−

λ (x))2 = 2(COSλ(x))2 + 2(COSr12λ(x))2.

If in the set λ1, λ2, . . . , λn there are two coinciding numbers, then due to properties of the
determinant of a matrix we have sin−

λ (x) = cos−
λ (x) = 0. One can directly check that in this

case

SINλ(x) = 1
2 sin+

λ(x), COSλ(x) = 1
2 cos+

λ(x). (13)

5. Properties

Symmetry of alternating sine and cosine functions SINλ(x) and COSλ(x) with respect to the
extended alternating group Ãn is a main property of these functions. However, they possess
many other interesting properties.

Continuity and scaling symmetry. The functions SINλ(x) and COSλ(x) are finite sums of
products of sine and cosine functions of one variable. Therefore, they are continuous functions
of x1, x2, . . . , xn and have continuous derivatives of all orders in R

n. Moreover, they are real
functions of x ∈ R

n.
For c ∈ R, let cλ = (cλ1, cλ2, . . . , cλn). Then

SINcλ(x) = sdet(sin 2π(cλi)xj )
n
i,j=1 = sdet(sin 2πλi(cxj ))

n
i,j=1 = SINλ(cx.)

The equality SINcλ(x) = SINλ(cx) expresses the scaling symmetry of the functions SINλ(x).
Similarly, we have COScλ(x) = COSλ(cx).

It follows from formulae for alternating sine and cosine functions that

SINλ(x) = SINx(λ), COSλ(x) = COSx(λ).

Orthogonality on the fundamental domainF
(
Ãaff

n

)
. Alternating multivariate sine functions

SINm(x) with m = (m1,m2, . . . , mn) ∈ De
+,mj ∈ Z, are orthogonal on the fundamental

domain F
(
Ãaff

n

)
with respect to the Euclidean measure. We have

22n

∫
F(Ãaff

n )

SINm(x)SINm′(x) dx = |Gm|δm,m′ , (14)

where |Gm| is the order of the subgroup Gm of the alternating group An consisting of

elements w ∈ An leaving m invariant, and the closure F
(
Ãaff

n

)
of F

(
Ãaff

n

)
consists of points

x = (x1, x2, . . . , xn) ∈ En such that
1
2 � x1, x2 � x3 � · · · � xn � 0.

This relation follows from orthogonality of the sine functions sin 2πmixj of one variable
(entering into the definition of the function SINm(x)). Indeed, we have

22
∫ 1/2

0
sin(2πkt) sin(2πk′t) dt = δkk′ , k, k′ ∈ Z

>0.

Let T be the set
[
0, 1

2

]n
. If the set m = (m1,m2, . . . , mn) has no coinciding numbers, then

22n

∫
T

SINm(x)SINm′(x) dx = |An|δm,m′ ,

where |An| is an order of the alternating group. Since we have to take F
(
Ãaff

n

)
exactly |An|

times in order to cover the set T, the formula (14) follows for such sets m = (m1,m2, . . . , mn).

7
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If in m = (m1,m2, . . . , mn) there are coinciding numbers, then in the expression (2) for
SINm(x) there are coinciding terms. This leads to the multiplier |Gm| in (14).

A similar orthogonality relation can be written down for the alternating multivariate cosine
functions:

22n

∫
F

(
Ãaff

n

) COSm(x)COSm′(x) dx = |Gm|δm,m′ . (15)

Solutions of the Laplace equation. The Laplace operator on the Euclidean space En in the
Cartesian coordinates x = (x1, x2, . . . , xn) has the form

� = ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · +
∂2

∂x2
n

.

Taking any summand in the expression for the alternating multivariate sine function, we get

� sin 2π(wλ)1x1 sin 2π(wλ)2x2 · · · sin 2π(wλ)nxn

= −4π2〈λ, λ〉 sin 2π(wλ)1x1 sin 2π(wλ)2x2 · · · sin 2π(wλ)nxn,

where λ = (λ1, λ2, . . . , λn) determines SINλ(x) and 〈λ, λ〉 = ∑n
i=1 λ2. The similar relation

is true for summands from the expression for the alternating multivariate cosine functions.
Since the action of � does not depend on a summand from the expression for alternating
multivariate sine or cosine function, we have

�SINλ(x) = −4π2〈λ, λ〉SINλ(x), �COSλ(x) = −4π2〈λ, λ〉COSλ(x). (16)

Symmetric and antisymmetric multivariate sine and cosine functions of [6] also satisfy
these equations. Besides, they satisfy the certain boundary conditions (antisymmetric sine
and cosine functions vanish on the boundary of the corresponding fundamental domain and
the derivative of the symmetric sine and cosine functions with respect to the normal to the
boundary of the fundamental domain vanishes on the boundary). Alternating multivariate sine
and cosine functions do not satisfy these conditions.

6. Expansions in alternating sine and cosine functions on F
(
Ãaff

n

)
Alternating sine and cosine functions determine symmetric (with respect to An) multivariate
Fourier transforms which generalize the usual sine Fourier and cosine Fourier transforms.
There are three types of such transforms: (a) Fourier transforms related to the functions
SINm(x) and COSm(x) with m = (m1,m2, . . . , mn),mj ∈ Z (Fourier series); (b) integral
Fourier transforms related to SINλ(x) and COSλ(x) with λ ∈ De

+; (c) multivariate finite sine
and cosine transforms.

In this section, we consider expansions in alternating sine and cosine functions SINm(x)

and COSm(x) on the fundamental domain F
(
Ãaff

n

)
. These expansions are constructed in the

same way as in the case of (anti)symmetric sine and cosine functions in [6].
Let f (x) be a symmetric (with respect to the extended affine alternating group Ãaff

n )
continuous real function on the n-dimensional Euclidean space En, which has continuous
derivatives. We may consider this function on the set T = [

0, 1
2

]n
(this set is a closure of the

union of the sets wF
(
Ãaff

n

)
, w ∈ An). Then f (x), as a function on T, can be expanded in sine

functions

sin 2πm1x1· sin 2πm2x2 · · · sin 2πmnxn, mi ∈ Z
>0.

We have

f (x) =
∑

mi∈Z
>0

cm sin 2πm1x1 · sin 2πm2x2 · · · sin 2πmnxn, (17)

8
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where m = (m1,m2, . . . , mn). Let us show that cwm = cm,w ∈ An. We represent each sine
function in the expression (17) in the form sin α = (2i)−1(eiα − e−iα). Then

f (x) =
∑
mi∈Z

cm e2π im1x1 e2π im2x2 · · · e2π imnxn =
∑
mi∈Z

cm e2π i〈m,x〉,

where 〈m, x〉 = ∑n
i=1 mixi and cm with positive mi, i = 1, 2, . . . , n, are such as in (17)

and each change of a sign in m leads to multiplication of cm by (−1). Due to the property
f (wx) = f (x), w ∈ An, for any w ∈ An we have

f (wx) =
∑
mi∈Z

cm e2π i〈m,wx〉 =
∑
mi∈Z

cm e2π i〈w−1m,x〉

=
∑
mi∈Z

cwm e2π i〈m,x〉 = f (x) =
∑
mi∈Z

cm e2π i〈m,x〉.

The last two rows show that the coefficients cm in (17) satisfy the conditions cwm = cm,w ∈ An.
Collections of products of sine functions of one variable at cwm,w ∈ An, in (17) coincide

with the functions SINm(x). Therefore, we obtain the expansion

f (x) =
∑
m∈P e

+

cmsdet(sin 2πmixj )
n
i,j=1 ≡

∑
m∈P e

+

cmSINm(x), (18)

where P e
+ := De

+ ∩ Z
n. Thus, any symmetric (with respect to An) continuous real function f

on T, which has continuous derivatives, can be expanded in antisymmetric multivariate sine
functions SINm(x),m ∈ P e

+ . Note that symmetric (with respect to An) real functions f on T
are in fact functions on the fundamental domain F

(
Ãaff

n

)
.

By the orthogonality relation (14), the coefficients cm in the expansion (18) are determined
by the formula

cm = 22n|Gm|−1
∫

F̃ (Aaff
n )

f (x)SINm(x) dx. (19)

Moreover, the Plancherel formula

∑
m∈P e

+

|Gm||cm|2 = 22n

∫
F̃ (Aaff

n )

|f (x)|2 dx (20)

holds, which means that the Hilbert spaces with the appropriate scalar products are isometric.
Formula (19) is an alternating sine Fourier transform of the function f (x). Formula (18)

gives an inverse transform. Formulae (18) and (19) give the alternating multivariate sine
Fourier transforms corresponding to alternating sine functions SINm(x),m ∈ P e

+ .

Let L2
(
F

(
Ãaff

n

))
denote the Hilbert space of functions on the domain F

(
Ãaff

n

)
with the

scalar product

〈f1, f2〉 =
∫

F(Ãaff
n )

f1(x)f2(x) dx.

The formulae (18)–(20) show that the set of alternating multivariate sine functions

SINm(x),m ∈ P e
+ , forms an orthogonal basis of L2

(
F

(
Aaff

n

))
.

Analogous transforms hold for alternating cosine functions COSm(x),m ∈ P e
+ . Let f (x)

be a symmetric (with respect to the group Ãaff
n ) continuous real function on the n-dimensional

9
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Euclidean space En, which has continuous derivatives. We may consider this function as a
function on F

(
Ãaff

n

)
. Then we can expand this function as

f (x) =
∑
m∈P e

+

cm sdet(cos 2πmixj )
n
i,j=1 =

∑
m∈P e

+

cmCOSm(x). (21)

The coefficients cm of this expansion are given by the formula

cm = 22n|Gm|−1
∫

F

(
Ãaff

n

) f (x)COSm(x) dx. (22)

The Plancherel formula is of the form∑
m∈P e

+

|Gm||cm|2 = 22n

∫
F

(
Ãaff

n

) |f (x)|2 dx.

7. Fourier transforms on the fundamental domain F (Ãn)

The expansions (18) and (21) of functions on the fundamental domain F
(
Ãaff

n

)
are expansions

in the sine and cosine functions SINm(x) and COSm(x) with integral m = (m1,m2, . . . , mn).
The functions SINλ(x) and COSλ(x) with λ lying in the domain De

+ (and not obligatory
integral) are not invariant with respect to the corresponding affine group Ãaff

n . They are
invariant only with respect to the group Ãn. The closure of the fundamental domain F(Ãn)

coincides with the set De
+ consisting of the points x such that x1, x2 � x3 � · · · � xn. The

functions SINλ(x), λ ∈ De
+, determine a Fourier-type transform on De

+.
We begin with the usual sine Fourier transform on R

n
+:

f̃ (λ) =
∫

R
n
+

f (x) sin 2πλ1x1 sin 2πλ2x2 · · · sin 2πλnxn dx, (23)

f (x) = 22n

∫
R

n
+

f̃ (λ) sin 2πλ1x1 sin 2πλ2x2 · · · sin 2πλnxn dλ. (24)

Let the function f (x), given on R
n
+, be invariant with respect to the alternating group An, that

is, f (wx) = f (x), w ∈ An. The function f̃ (λ) is also invariant with respect to An:

f̃ (wλ) =
∫

R
n
+

f (x) sin 2π(wλ)1x1 · · · sin 2π(wλ)nxn dx

=
∫

R
n
+

f (x) sin 2πλ1(w
−1x)1 · · · sin 2πλn(w

−1x)nd(w−1x)

=
∫

R
n
+

f (wx) sin 2πλ1x1 · · · sin 2πλnxn dx = f̃ (λ). (25)

Replace λ by wλ,w ∈ An, on both sides of (23) and then sum up these both sides over w ∈ An.
Due to the expression (2) for alternating sine functions SINλ(x), instead of (23) we obtain

f̃ (λ) = |An|−1
∫

R
n
+

f (x)SINλ(x) dx ≡
∫

De
+

f (x)SINλ(x) dx, λ ∈ De
+, (26)

where we have taken into account that f (x) is invariant with respect to An.
Starting from (24), we obtain the inverse formula,

f (x) = 22n

∫
De

+

f̃ (λ)SINλ(x) dλ. (27)

10
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For the transforms (26) and (27) the Plancherel formula∫
De

+

|f (x)|2 dx = 22n

∫
De

+

|f̃ (λ)|2 dλ

holds. The formulae (26) and (27) determine the alternating multivariate sine Fourier
transforms on the domain F(Ãn).

The cosine functions COSλ(x) determine similar transforms. Namely, we have

f̃ (λ) =
∫

De
+

f (x)COSλ(x) dx, where f (x) = 22n

∫
De

+

f̃ (λ)COSλ(x) dλ. (28)

The corresponding Plancherel formula holds.

8. Discrete one-dimensional cosine transforms

Discrete one-dimensional sine and cosine transforms are useful for applications. The theory
of these transforms as well as their different applications and methods of work with them are
given in [19] (see also [20]). In this section, we give these one-dimensional transforms in the
form which will be used in the following sections.

In [19], the discrete cosine transforms are denoted as DCT-1, DCT-2, DCT-3, DCT-4. Let
us expose all these transforms, conserving notations used in the literature on signal processing.
They are determined by a positive integer N.

DCT-1. This transform is given by the kernel

µr(k) = √
crck

(
2

N

)1/2

cos
πrk

N
, where k, r ∈ {0, 1, 2, . . . , N} (29)

where ck = 1
2 for k = 0, N and ck = 1 otherwise. The matrix (µr(k))Nr,k=0 is orthogonal.

Therefore, the orthogonality relation for these discrete functions is given by

2

N

N∑
k=0

ck cos
πrk

N
cos

πr ′k
N

= c−1
r δrr ′ . (30)

Thus, these functions give the expansion

f (k) =
N∑

r=0

ar cos
πrk

N
, where ar = 2cr

N

N∑
k=0

ckf (k) cos
πrk

N
. (31)

DCT-2. This transform is given by the kernel

ωr(k) = √
ck

(
2

N

)1/2

cos
π

(
r + 1

2

)
k

N
, where k, r ∈ {0, 1, 2, . . . , N − 1},

where ck = 1/2 for k = 0 and ck = 1 otherwise.
The orthogonality relation for these discrete functions is given by

2

N

N−1∑
k=0

ck cos
π

(
r + 1

2

)
k

N
cos

π
(
r ′ + 1

2

)
k

N
= δrr ′ . (32)

These functions determine the expansion

f (k) =
N−1∑
r=0

ar cos
π

(
r + 1

2

)
k

N
, where ar = 2

N

N−1∑
k=0

ckf (k) cos
π

(
r + 1

2

)
k

N
. (33)

11
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DCT-3. This transform is determined by the kernel

σr(k) = √
cr

(
2

N

)1/2

cos
πr

(
k + 1

2

)
N

,

where k and r run over the values {0, 1, 2, . . . , N − 1} and where cr = 1/2 for r = 0 and
cr = 1 otherwise.

The orthogonality relation for these discrete functions is given by the formula

2

N

N−1∑
k=0

cos
πr

(
k + 1

2

)
N

cos
πr ′(k + 1

2

)
N

= c−1
r δrr ′ . (34)

These functions give the expansion

f (k) =
N−1∑
r=0

ar cos
πr

(
k + 1

2

)
N

, where ar = 2cr

N

N−1∑
k=0

f (k) cos
πr

(
k + 1

2

)
N

. (35)

DCT-4. This transform is given by the kernel

τr(k) =
(

2

N

)1/2

cos
π

(
r + 1

2

)(
k + 1

2

)
N

,

where k and r run over the values {0, 1, 2, . . . , N − 1}. The orthogonality relation for these
discrete functions is given by

2

N

N−1∑
k=0

cos
π

(
r + 1

2

)(
k + 1

2

)
N

cos
π

(
r ′ + 1

2

)(
k + 1

2

)
N

= δrr ′ . (36)

These functions determine the expansion

f (k) =
N−1∑
r=0

ar cos
π

(
r + 1

2

)(
k + 1

2

)
N

, where ar = 2

N

N−1∑
k=0

f (k) cos
π

(
r + 1

2

)(
k + 1

2

)
N

.

(37)

Note that there exist also four discrete sine transforms, corresponding to the above discrete
cosine transforms. They are obtained from the cosine transforms by replacing in (31), (33),
(35) and (37) cosines discrete functions by sine discrete functions (see [19]).

9. Alternating multivariate discrete cosine transforms

To each of the finite cosine transforms DCT-1, DCT-2, DCT-3, DCT-4 there corresponds an
alternating multivariate discrete cosine transform. We denote the corresponding transforms
as AMDCT-1, AMDCT-2, AMDCT-3, AMDCT-4. We fix a positive integer N and use the
notation D̆n

N for the subset of the set Dn
N ≡ DN × DN × . . . × DN (n times) with DN =

{0, 1, 2, . . . , N}, consisting of points r = (r1, r2, . . . , rn), ri ∈ Z
�0, such that

N � r1, r2 � r3 � · · · � rn � 0.

The set F̆ n
N ≡ 1

N
D̆n

N is a grid in the fundamental domain F
(
Ãaff

n

)
of the extended affine

alternating group Ãaff
n .

The set Dn
N is obtained by action by elements of the group An upon D̆n

N , that is, Dn
N

coincides with the set
{
wD̆n

N ;w ∈ An

}
. However, in

{
wD̆n

N ;w ∈ An

}
, some points are met

several times. Namely, a point k0 ∈ D̆n
N is met

∣∣Ak0

∣∣ times in the set
{
wD̆n

N ;w ∈ An

}
,

where
∣∣Ak0

∣∣ is an order of the subgroup Ak0 ⊂ An consisting of elements w ∈ An leaving k0

invariant.

12
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AMDCT-1. We take the finite cosine functions (29) and make multivariate finite cosine
functions by multiplying n copies of these functions:

cosm
s
N

:= cos
πm1s1

N
cos

πm2s2

N
· · · cos

πmnsn

N
, (38)

where sj ,mi ∈ {0, 1, 2, . . . , N}. We consider these functions for integers mi such that
N � m1,m2 � m3 � · · · � mn � 0 (these n-tuples m = (m1,m2, . . . , mn) are elements of
D̆n

N ) and symmetrize them by means of the group An. As a result, we obtain a finite version
of the alternating multivariate cosine function (3):

COS(1)
r (k) := |An|−1/2

∑
w∈An

cos
πrw(1)k1

N
cos

πrw(2)k2

N
· · · cos

πrw(n)kn

N

= |An|−1/2sdet

(
cos

πrikj

N

)n

i,j=1

, (39)

where k = (k1, k2, . . . , kn), ki ∈ {0, 1, 2, . . . , N}, and where Ar is the subgroup of An

consisting of elements leaving r invariant. (We have here expressions cos πrikj

N
, not cos 2πrikj

as in (3).
A scalar product of functions (38) is determined by〈

cosm
s
N

, cosm′
s
N

〉
=

n∏
i=1

〈
cos

πmisi

N
, cos

πm′
i si

N

〉

=
n∏

i=1

N∑
si=0

csi
cos

πmisi

N
cos

πm′
i si

N
=

(
N

2

)n

c−1
m1

· · · c−1
mn

δm,m′ , (40)

where we have taken into account formula (30). Since functions COS(1)
m (s) are linear

combinations of functions cosm′ s
N

, then a scalar product for COS(1)
m (s) is also defined.

Proposition 1. For m, m′ ∈ D̆n
N , the discrete functions (39) satisfy the orthogonality relation

〈COS(1)
m (s), COS(1)

m′ (s)〉 =
∑
s∈Dn

N

csCOS(1)
m (s)COS(1)

m′ (s)

= |An|
∑
s∈D̆n

N

|As|−1csCOS(1)
m (s)COS(1)

m′ (s) =
(

N

2

)n

c−1
m |Am|δmm′ , (41)

where cs = cs1cs2 · · · csn
and csi

are such as in formula (29).

Proof. Due to the orthogonality relation for the cosine functions cos πrk
N

(see formula (30) we
have∑
s∈Dn

N

csCOS(1)
m (s)COS(1)

m′ (s) = |Am|
|An|

∑
w∈An

n∏
i=1

N∑
si=0

csi
cos

πmw(i)si

N
cos

πm′
w(i)si

N

= |Am|
(

N

2

)n

c−1
m δmm′ , (42)

where (mw(1), mw(2), . . . , mw(n)) is obtained from (m1,m2, . . . , mn) by action by the
permutation w ∈ An. Since functions COS(1)

m (s) are symmetric with respect to An, we
have ∑

s∈Dn
N

csCOS(1)
m (s)COS(1)

m′ (s) = |An|
∑
s∈D̆n

N

|As|−1csCOS(1)
m (s)COS(1)

m′ (s).

This proves the proposition. �
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Let f be a function on D̆n
N or a symmetric (with respect to An) function on Dn

N . Then it
can be expanded in functions (39) as

f (k)=
∑

r∈D̆n
N

arCOSr(k), (43)

where the coefficients ar are determined by the formula

ar=cr|An|
|Ar|

(
2

N

)n ∑
k∈D̆n

N

|Ak|−1ckf (k)COSr(k). (44)

The Plancherel formula is

|An|
∑

k∈D̆n
N

|Ak|−1ck|f (k)|2 =
(

N

2

)n ∑
r∈D̆n

N

c−1
r |Ar||ar|2.

A validity of the expansions (43) and (44) follows from the relation (41).

AMDCT-2. This transform is given by the kernel

COS(2)
r (k) = |An|−1/2sdet

(
cos

π
(
ri + 1

2

)
kj

N

)n

i,j=1

, r ∈ D̆n
N−1, (45)

where D̆n
N−1 is the set D̆n

N with N replaced by N−1 and k = (k1, k2, . . . , kn), ki ∈ {0, 1, 2, . . . ,

N − 1}. The orthogonality relation for these kernels is

〈COS(2)
r (k), COS(2)

r′ (k)〉 =
∑

k∈D̆n
N−1

|An|
|Ak|ckCOS(2)

r (k)COS(2)
r′ (k)

=
(

N

2

)n

|Ar|δrr′ , (46)

where ck = c1c2 · · · cn and cj are such as in (32).
This transform is given by the formula

f (k) =
∑

r∈D̆n
N−1

arCOS(2)
r (k), (47)

where

ar = |An|
|Ar|

(
2

N

)n ∑
k∈D̆n

N−1

|Ak|−1ckf (k)COS(2)
r (k).

The corresponding Plancherel formula holds.

AMDCT-3. This transform is given by the kernel

COS(3)
r (k) = |An|−1/2sdet

(
cos

πri

(
kj + 1

2

)
N

)n

i,j=1

, (48)

where r ∈ D̆n
N−1. The orthogonality relation for these kernels is

〈COS(3)
r (k), COS(3)

r′ (k)〉 =
∑

k∈D̆n
N−1

|An|
|Ak|COS(3)

r (k)COS(3)
r′ (k)

= c−1
r

(
N

2

)n

|Ar|δrr′ , (49)

where cr = c1c2 · · · cn and ci are such as in formula (34).
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This transform is given by the formula

f (k) =
∑

r∈D̆n
N−1

arCOS(3)
r (k), (50)

where

ar = cr|An|
|Ar|

(
2

N

)n ∑
k∈D̆n

N−1

|Ak|−1f (k)COS(3)
r (k).

The corresponding Plancherel formula holds.

AMDCT-4. This transform is given by the kernel

COS(4)
r (k) = |An|−1/2sdet

(
cos

π
(
ri + 1

2

)(
kj + 1

2

)
N

)n

i,j=1

, (51)

where r ∈ D̆n
N−1. The orthogonality relation for these kernels is

〈COS(4)
r (k), COS(4)

r′ (k)〉 =
∑

k∈D̆n
N−1

|An|
|Ak|COS(4)

r (k)COS(4)
r′ (k)

=
(

N

2

)n

|Ar|δrr′ . (52)

This transform is given by the formula

f (k) =
∑

r∈D̆n
N−1

arCOS(4)
r (k), (53)

where

ar =
(

2

N

)n |An|
|Ar|

∑
k∈D̆n

N−1

|Ak|−1f (k)COS(4)
r (k).
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