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Abstract

We define and study multivariate sine and cosine functions, symmetric with
respect to the alternating group A,, which is a subgroup of the permutation
(symmetric) group S,. These functions are eigenfunctions of the Laplace
operator.  They determine Fourier-type transforms. There exist three
types of such transforms: expansions into corresponding sine-Fourier and
cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms,
and multivariate finite sine and cosine transforms. In all these transforms,
alternating multivariate sine and cosine functions are used as a kernel.

PACS numbers: 02.10.Gd, 02.20.—a, 02.30.Gp, 02.30.Nw, 02.60.L;j

1. Introduction

In mathematics and mathematical physics, we very often meet functions on the Euclidean
space E, which are symmetric or antisymmetric with respect to the permutation (symmetric)
group S,. For example, such functions describe collections of identical particles. Symmetric
and antisymmetric solutions appear in the theory of integrable systems. Characters of finite-
dimensional irreducible representations of the group GL(n, C) and of the group U(n) are
symmetric functions. One meets symmetric and antisymmetric functions in the quantum
theory of many-particle systems [1-3].

Appearance of (anti)symmetric functions leads to appearance of (anti)symmetric special
functions. The book [4] deals with symmetric (with respect to S,) polynomials. Symmetric
and antisymmetric multivariate exponential functions were studied in [5]. Symmetric and
antisymmetric multivariate sine and cosine functions were researched in [6]. In [5, 6],
symmetry and antisymmetry are considered with respect to the symmetric group S,,.

However, there exists a symmetry which is so important as the symmetry with respect to
the symmetric group S,. It is the symmetry with respect to the alternating group A, which
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is an invariant subgroup of S, of index 2 (that is, the group S, /A, has two elements). The
alternating group A, consists of transformations w € S, with detw = 1, thatis, A, consists of
even permutations of S,. The group A, is a subgroup of the rotation group SO (n) (note that
S, does not belong to SO (n)). The group A, is simple, that is, it has no invariant subgroups.

In [7], we studied multivariate exponential functions symmetric with respect to the group
A,. We call these functions alternating multivariate exponential functions. The aim of this
paper is to describe and to study multivariate sine and cosine functions symmetrized by the
alternating group A, and the corresponding Fourier-type transforms. We call these functions
alternating multivariate sine and cosine functions and denote them by SIN; (x) and COS; (x),
respectively, where A = (Ay, A2, ..., Ay) € R, x = (x1, x2, ..., x,)) € R".

Alternating multivariate sine and cosine functions are connected with symmetric and
antisymmetric multivariate sine and cosine functions studied in [6]. In fact, this connection is
the same as the connection of the sine and cosine functions of one variable with the exponential
function of one variable (see section 4).

We may consider three types of alternating multivariate sine and cosine functions: (a)
functions SIN,,(x) and COS,,(x) with m = (m;,m», ..., m,), m; € Z, which determine
Fourier series expansions in alternating multivariate sine and cosine functions, respectively;
(b) functions SIN; (x) and COS; (x) with A = (A1, A2, ..., Ay), A; € R, which determine
integral multivariate Fourier transforms; (c) functions SIN; (x) and COS;(x), where x =
(x1, X2, ..., x,) take a finite set of values; they determine multivariate finite sine and cosine
transforms.

Functions (b) are symmetric with respect to elements of the alternating subgroup A,
of the permutation group S,. Moreover, the function SIN, (x) is antisymmetric and the
function COS; (x) is symmetric with respect to change of a sign of any coordinate x;. That is,
symmetries of the functions (b) are described by the extended alternating group A, = A, x Z2,
where Z7 is a product of n copies of the group Z, of changes of a sign.

Symmetries of functions (a) are described by a wider group, since sine and cosine
functions of one variable sin2wmx, cos2mrmx, m € Z, are invariant with respect to shifts
X — x +k,k € Z. Symmetries of functions (a) are described by elements of the extended
affine alternating group ;\;‘ff which is a product of the groups A,, T, and Z7, where T, consists
of shifts of E, by vectors r = (ry,r2,...,r,),r; € Z. A fundamental domain F (A2") of the
group A is a certain bounded set in R”.

The functions (a) and (b) are solutions of the Laplace equation on the Euclidean space E,,
or on the corresponding fundamental domain.

Functions on the fundamental domain F (A2T) can be expanded into series in the functions
(a). These expansions are an analogue of the usual sine and cosine Fourier series for functions
of one variable. Functions (b) determine symmetrized sine and cosine Fourier integral
transforms on the fundamental domain F(A,) of the extended alternating group A, = A, x z5.
This domain consists of points x € E, such that x;,x, > x3 > x4 > --- > x, 2> 0, where
X1, Xo > x3 means that x; > x3 and x» > x3.

Functions (c) are used to determine symmetric (with respect to A,) finite (that is, on a
finite set) trigonometric multivariate Fourier transforms. These transforms are given on grids
consisting of points of the fundamental domain F (A%T).

The discrete Fourier transforms, determined by (anti)symmetric multivariate sine and
cosine functions, studied in [6], and by alternating multivariate sine and cosine functions,
studied in this paper, have a number of practically useful properties. In particular, continuous
extension of the discrete transforms smoothly interpolate digital data in any dimension.
Examples show that relative to the amount of available data, these transforms provide much
smoother interpolation than the conventional Fourier transforms.
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Symmetric and antisymmetric multivariate trigonometric functions, studied in [6], satisfy
certain boundary conditions (antisymmetric trigonometric functions vanish on the boundary
of the corresponding fundamental domain and the derivative of symmetric trigonometric
functions with respect to the normal to the boundary of the fundamental domain vanishes on
the boundary). This means that smooth functions, which are expanded in these functions, have
to satisfy these conditions, thatis, not each smooth function can be expanded in (anti)symmetric
multivariate trigonometric functions. Alternating multivariate sine and cosine functions satisfy
no boundary conditions and any smooth function can be expanded in these trigonometric
functions.

(Anti)symmetric multivariate sine and cosine functions, considered in [6], as well as
alternating multivariate sine and cosine functions, studied in this paper, are closely related
to symmetric and antisymmetric orbit functions defined in [8, 9] and studied in detail in
[10, 11]. These orbit functions are connected with the Dynkin—Coxeter diagrams of semisimple
Lie algebras of rank n. Discrete orbit function transforms, corresponding to Dynkin—Coxeter
diagrams of low rank, were studied and exploited in rather useful applications (see [12—18]).
Clearly, our alternating multivariate sine and cosine transforms can be applied under solution
of the same problems, that is, of the problems formulated on grids or lattices. But alternating
multivariate sine and cosine functions are simpler than orbit functions.

Our exposition depends on properties of the alternating group and its extensions. We
also use properties of semideterminants, which are closely related to determinants and
antideterminants. The determinant det(a;;) of an n x n matrix (a;;); =1 is defined
as

n
i.j=1

det(a;j); ;= = Z(detw)m,w(l)az,w(z) e O w(n)
wesS,

where S, is the permutation (symmetric) group of n symbols 1,2,...,n, the set
(w(1), w(2), ..., w(n)) means the set w(l,2,...,n), and detw denotes a determinant of
the transform w, that is, detw = 1 if w is an even permutation and detw = —1 otherwise.
Along with the determinant, we use the antideterminant det” of the matrix (a;;)] ;_, which is
defined as a sum of all summands entering into the expression for a determinant, taken with
the sign +,

det™(a;))} ;=) = Z arw)a2,w@) * - Anwn) = Z Ayw(1),10w(2),2 " " * Aw(n),2-
wes, wWES,

For the semideterminant sdet of a matrix (a;;); ;_, we have
1
sdet(a,-j):.”jzl = E(det(aij)ﬁjzl + det+(aij)ﬁj=1).
Clearly,
sdet(a;;); j—) = Z arw2,w) - dnwn) = Z Auy(1),10w(2),2 " * * Gw(n),n- ey
wEA, weA,

The main property of semideterminants is that they are not changed under application to rows
or to columns of the corresponding matrices, a permutation w € A,. But they are not invariant
under application to rows or to columns permutations w € S, such that detw = —1.

2. Alternating multivariate sine and cosine functions

In this section, we introduce a new type of functions symmetric with respect to the alternating
group A,. We call these functions the alternating multivariate sine and cosine functions. They
are studied in the forthcoming sections.
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An alternating multivariate sine function SIN; (x) of x = (x1, x2, ..., x,) is defined as
the function

SIN)L(X) = SIN()‘I,)\2 ..... )L”)(Xl, X2, ooy Xp) 1= sdet(sin 27‘[)\,')6]')?’]»:1
= Z SIN 27T A Xyy(1) SIN 27T Ao Xy (2) - -+ - SIN 27T Ay X ()
weA,
= Z SIN 27T Ayp(1)X1 SIN 27T Ayy(2) X2 + + + SIN 27T Ay () X1 2)
weA,
where (w(1), w(2), ..., w(n)) means the set w(l,2,...,n),and A = (A2, Ap, ..., A,) is aset

of real numbers, which determines the function SIN; (x).
A special case of the alternating multivariate sine functions is when A; are integers; in this

case we write (m, my, ..., m,) instead of (A1, Ao, ..., m,),
SIN(n, my.....m,) (X) = sdet(sin anixj)?,j:l’ m; € 7.
An alternating multivariate cosine function COS; (x) of x = (x1, x2, ..., X,,) is defined
as the function
COS;.(x) = COS, o n (X1, X2, .., X)) 1= sdet(cos 271)»,-xj)ﬁj=1

Z (detw) coS 27 A1 Xy (1) COS 2T A1 Xyy(2) * * * COS 27T Ay Xyp()

weA,

Z (det w) coS 27w Ayy(1)X1 €COS 27 Ayy(2)X2 « + + COS 2T Ayy(yXn.  (3)
weA,

The expression (1) for the semideterminant sdet does not change under applying to rows
or to columns a permutation from A,. This means that for any permutation w € A, we have

SIN,; (x) = SIN, (x), SIN; (wx) = SIN; (x), 4)
COS 5 (x) = COS; (x), COS; (wx) = COS;, (x). %)

Therefore, it is enough to consider only alternating sine and cosine functions SIN; (x) and
COS;.(x) with A = (Ay, Ay, ..., A,) such that

A Ay Z A3 2 0 2 Ay,

where A1, A, > Az means that A > Az and A, > A3. Such A are called semidominant. The
set of all semidominant A is denoted by D¢. Below, considering alternating sine and cosine
functions we assume that A € DY.

Alternating sine and cosine functions are related to symmetric and antisymmetric
multivariate sine and cosine functions sin; (x), sin, (x), cos} (x), cos; (x) studied in [6]. They
are determined by the formulae

n

sin; (x) = det"(sin 27 A; x;)! siny (x) = det(sin 27 A;x;)7 ;.

ij=1°

cosj (x) = det™(cos 2 A;x;) cos, (x) = det(cos 2 A;x;)

n n

i,j=1° ij=1
where det” is the antideterminant of the corresponding matrix, and A and x are such as in
(2). A connection of the functions SIN; (x) and COS; (x) with symmetric and antisymmetric

multivariate sine and cosine functions will be considered in section 4.

4



J. Phys. A: Math. Theor. 41 (2008) 145205 A U Klimyk and J Patera

3. Extended affine alternating group and fundamental domains

In order to study symmetries of alternating multivariate sine and cosine functions, we introduce
in this section the extended affine alternating group and the extended alternating group.
Fundamental domains of these groups in the n-dimensional Euclidean space are derived.

We have seen (see (4) and (5)) that the functions SIN; (x) and COS; (x) are symmetric
with respect to the alternating group A,. However, these functions are symmetric with respect
to a wider group.

The sine and cosine functions of one variable are symmetric with respect of the operation
¢ of change of coordinate sign,

esin2nry :=sin2nr(—y) = —sin2xry, £COS2mry = cos2mry.

This symmetry is reflected in properties of the functions SIN; (x) and COS, (x). Let &; denote
the operation of change of a sign of the coordinate x;. One can see from the expressions (2),
(3) for SIN; (x) and COS; (x) that

SIN; (¢;x) = —SIN; (x), COS; (g;x) = COS; (x). (6)

We denote the group generated by changes of coordinate signs of x = (x1, x2, ..., x,) by Z7,
where Z, is the group of changes of a sign of one coordinate.

The group A, = A, X Z5 (adirect product of A, and Z%) is called the extended alternating
group. It is a group of symmetries for the functions SIN; (x) and COS; (x).

We have the same symmetries under changes of signs in the numbers A, Az, ..., A,. In
order to avoid these symmetries, we may assume that all coordinates x;, x5, ..., x, and all
numbers A, Ag, ..., A, are non-negative.

The functions SIN,,(x) and COS,,(x) with integral m = (my, ms,...,m,) admit

additional symmetries related to the periodicity of the sine and cosine functions sin2mwry
and cos2rnry,r € Z,y € R. These symmetries of SIN,,(x) and COS,,(x) are described by
the discrete group of shifts in the Euclidean space E, by vectors

r=rie;+mrne+---+r,e,, ri € 7,
where e, e,, . . ., e, are the unit vectors in directions of the corresponding coordinate axes. We
denote this group by 7,,. We have

SIN,, (x + r) = SIN,,, (x), COS,,(x +r) = COS,, (x).

Permutations of A,, the operations ¢; of changes of coordinate signs, and shifts of 7,
generate a group which is denoted as A';‘lff and is called the extended affine alternating group.
(The group generated by permutations of A, and by shifts of 7, generate a group which is
denoted as A and is called the affine alternating group). Thus, the group AT is a product
of its subgroups,

A = A, x Z8x T, = A, x T,

where T, is an invariant subgroup, that is, wiw ™!

Zr,t €T,.

An open connected, simply connected set F C R" is called a fundamental domain for
the group AT (for the group A,) if it does not contain equivalent points (that is, points x and
x" such that x’ = gx, where g is an element of Aj‘lff or A,, respectively) and if its closure
contains at least one point from each A% -orbit (from each A,-orbit). Recall that an A*T-orbit
of a point x € R" is the set of points wx, w € A¥. Since A" contains the infinite subgroup
T,, an A*T_orbit is an infinite set of points. The group A, is finite and thus A,-orbits are finite
sets of points.

€ T, and sitsfl eT,forwe A, & €
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Since A, consists of permutations w such that detw = 1, the set D, of all points
x = (x1, X2, ..., X,) such that
X1, X > X3 > +-->Xx, >0, (7)

where x|, x, > x3 means that x; > x3 and x, > x3, is a fundamental domain for the group A,

(we denote it as F(A,)). The set of points x = (x1, X2, ..., X,) € D¢, such that
%>x1,x2>x3>--->xn>0 ()

is a fundamental domain for the extended affine alternating group Aj;ff (wedenoteitas F (Aﬂff)).

As we have seen, the multivariate alternating sine and cosine functions SIN; (x) and
COS, (x) are invariant with respect to the alternating group A, and behave according to
formula (6) under changes of coordinate signs. This means that it is sufficient to consider
these functions only on the closure of the fundamental domain F(A,), that is, on the set DS
of points x such that

X, X2 2 x3 2 2x, 20.

Values of these functions on other points are received by using symmetries.
Symmetry of SIN,,(x) and COS,,(x) with integral m = (m;, m», ..., m,) with respect
to the extended affine alternating group A,

SIN,, (wx +r) = SIN,, (x), COS,,(wx +r) =COS,,(x)w € A, ref,, 9
SIN,, (g;x) = —SIN,, (x), COS,, (e;x) = COS,, (x), & € Zy, (10)
means that we may consider these functions on the closure of the fundamental domain F (Azﬁ),
that is, on the set of points

Iz2xnz2x>>x,20.
Values of these functions on other points are obtained by using relations (9) and (10).

4. Relation to symmetric and antisymmetric sine and cosine functions

The alternating multivariate sine and cosine functions SIN; (x) and COS;, (x) are related
to symmetric and antisymmetric multivariate sine and cosine functions sinj (x), sin; (x),
cos} (x), cos; (x) studied in [6].

It follows from the definitions of alternating and symmetric and antisymmetric multivariate
sine and cosine functions that for A such that A; > A, > A3 > --- > A, we have

sin; (x) = SIN; (x) — SIN,,»(x), siny (x) = SIN; (x) + SIN, 3 (x),
cos, (x) = COS,(x) — COS,,5(x), cos (x) = COS; (x) + COS, ;. (x),

where r|; means the permutation of A and A,. It follows from here that

SIN;.(x) = 3 (sinf (x) + sin; (x)), COS;.(x) = 3(cos} (x) + cos; (x)), (11)
SIN, 2 (x) = %(sinx(x) — sin; (x)), COS, 1 (x) = %(cosj{(x) — cos, (x)). (12)

It is directly derived from these formulae that

(sinf(x))” — (sin; (x))? = 4SIN (x)SIN,., (x),
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(cost ()’ = (cos; (x))? = 4COS;, (x)COS, ;. (x),
(sin;(x))2 + (sin (x))? = 2(SIN; (x))? + 2(SIN,, ;. (x))?,
(cos;(x))2 + (cos; (x))? = 2(COS,.(x))? + 2(COS, 1 (x))*.

If in the set Ay, Ay, ..., A, there are two coinciding numbers, then due to properties of the
determinant of a matrix we have sin, (x) = cos, (x) = 0. One can directly check that in this
case

SIN;. (x) = § sinf (x), COS;.(x) = 5 cosi(x). (13)

5. Properties

Symmetry of alternating sine and cosine functions SIN; (x) and COS; (x) with respect to the
extended alternating group A, is a main property of these functions. However, they possess
many other interesting properties.

Continuity and scaling symmetry. The functions SIN; (x) and COS, (x) are finite sums of
products of sine and cosine functions of one variable. Therefore, they are continuous functions
of x1, x2, ..., x, and have continuous derivatives of all orders in R". Moreover, they are real
functions of x € R".

Forc € R, let ch = (cAy, cAa, ..., cA,). Then

SINy. (x) = sdet(sin 27 (cA;)x; ?,j:l = sdet(sin 27T)Li(cxj))ﬁj:1 = SIN; (cx.)

The equality SIN,; (x) = SIN, (cx) expresses the scaling symmetry of the functions SIN; (x).
Similarly, we have COS, (x) = COS; (cx).
It follows from formulae for alternating sine and cosine functions that

SIN; (x) = SIN, (1), COS; (x) = COS,(1).
Orthogonality on the fundamental domainF (Aﬁff). Alternating multivariate sine functions
SIN,,(x) with m = (m(,my,...,m,) € D{,m; € Z, are orthogonal on the fundamental

domain F(A") with respect to the Euclidean measure. We have

2 / SIN,, (x)SINyy () d¥ = [Gon S (14)
F(Asz) ’

where |G| is the order of the subgroup G, of the alternating group A, consisting of

elements w € A, leaving m invariant, and the closure F(A2T) of F(A") consists of points
x = (x1, X2, ...,Xx,) € E, such that

IZzxx2x3= o 2x, 20

This relation follows from orthogonality of the sine functions sin27m;x; of one variable
(entering into the definition of the function SIN,, (x)). Indeed, we have

12
22 / sin2mkt) sinQmk't) dt = 8, k, k' € 27°.
0
Let T be the set [0, ]". If the set m = (my, m,, ..., m,) has no coinciding numbers, then
22 / SIN,, () SNy () dx = | Ay |8y
T

where |A,| is an order of the alternating group. Since we have to take F(AT) exactly |A,|
times in order to cover the set T, the formula (14) follows for such sets m = (m, m, ..., m,).

7
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If in m = (my, m,, ..., m,) there are coinciding numbers, then in the expression (2) for
SIN,, (x) there are coinciding terms. This leads to the multiplier |G,,| in (14).
A similar orthogonality relation can be written down for the alternating multivariate cosine

functions:
22" Fcosm (x)COSm’(x) dx = |Gm|5m,m’~ (15)
F(Aaﬂ)
Solutions of the Laplace equation. The Laplace operator on the Euclidean space E, in the
Cartesian coordinates x = (x1, X2, ..., X,) has the form
92 92 32

=ttt —.
axi  9x3 9x2
Taking any summand in the expression for the alternating multivariate sine function, we get
A sin 2w (wA)1x1 sin 27 (WA )Xy - - - sin 2w (W), X,
= —47% (A, A) sin 27 (wA) X1 Sin 277 (WA)ax7 - - - $in 277 (WA) X,

where A = (A1, Ay, ..., A,) determines SIN; (x) and (A, A) = Z?:l A2. The similar relation
is true for summands from the expression for the alternating multivariate cosine functions.
Since the action of A does not depend on a summand from the expression for alternating
multivariate sine or cosine function, we have

ASIN; (x) = —47%(x, A)SIN, (x), ACOS; (x) = —47% (A, 1)COS; (x). (16)

Symmetric and antisymmetric multivariate sine and cosine functions of [6] also satisfy
these equations. Besides, they satisfy the certain boundary conditions (antisymmetric sine
and cosine functions vanish on the boundary of the corresponding fundamental domain and
the derivative of the symmetric sine and cosine functions with respect to the normal to the
boundary of the fundamental domain vanishes on the boundary). Alternating multivariate sine
and cosine functions do not satisfy these conditions.

6. Expansions in alternating sine and cosine functions on F'( Af)

Alternating sine and cosine functions determine symmetric (with respect to A,) multivariate
Fourier transforms which generalize the usual sine Fourier and cosine Fourier transforms.
There are three types of such transforms: (a) Fourier transforms related to the functions
SIN,,(x) and COS,,(x) with m = (m,m,...,m,),m; € Z (Fourier series); (b) integral
Fourier transforms related to SIN, (x) and COS; (x) with A € D¢; (c) multivariate finite sine
and cosine transforms.

In this section, we consider expansions in alternating sine and cosine functions SIN,, (x)
and COS,, (x) on the fundamental domain F (Afff). These expansions are constructed in the
same way as in the case of (anti)symmetric sine and cosine functions in [6].

Let f(x) be a symmetric (with respect to the extended affine alternating group A;‘ff)
continuous real function on the n-dimensional Euclidean space E,, which has continuous
derivatives. We may consider this function on the set T = [0, %]n (this set is a closure of the
union of the sets wF (Aj;ff), w € A,). Then f(x), as a function on T, can be expanded in sine
functions

Sin2mm X~ Sin 27w moxy - - - SIn 2w My, x,,, m; € 7Z7°.
We have
fx) = Z Cp SIN27TmM X1 - SIN 27T Mo Xy « - - SIN 27T My Xy, a7
m;eZ°
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where m = (my, ms, ..., m,). Let us show that c,,, = ¢;,, w € A,. We represent each sine
function in the expression (17) in the form sina = (2i)~!(e/* — e7'*). Then

f(x) — E : Cm emelxl lerlmzxz . _e27Tlman — § : Cm e2m(m,x)’

m; el m; L

where (m, x) = Z?:l m;x; and ¢, with positive m;,i = 1,2,...,n, are such as in (17)
and each change of a sign in m leads to multiplication of ¢,, by (—1). Due to the property
fwx) = f(x),w € A,, forany w € A, we have

f(wx) — Z Cm eZﬂi(m.wx) — Z Cm eZni(urlm,x)

m; el m; el
2mwi(m,x) __ _ 2mi(m,x
= E Copm €771 >—f(x)— E €T
m; € m; €

The last two rows show that the coefficients c,, in (17) satisfy the conditions ¢y, = ¢, W € A,,.
Collections of products of sine functions of one variable at c,,,, w € A,, in (17) coincide
with the functions SIN,, (x). Therefore, we obtain the expansion

fx) = Z cmsdet(sin 2wm;x;); ) = Z CmSIN, (x), (18)

meP{ meP{

where P := D¢ NZ". Thus, any symmetric (with respect to A,) continuous real function f
on T, which has continuous derivatives, can be expanded in antisymmetric multivariate sine
Sunctions SIN,, (x), m € P{. Note that symmetric (with respect to A,) real functions f on T
are in fact functions on the fundamental domain F (A'jlff).

By the orthogonality relation (14), the coefficients ¢, in the expansion (18) are determined
by the formula

F(A;T)

Cm = 22”|Gm|_'/ £ (x)SIN,, (x) dx. (19)
Moreover, the Plancherel formula

> Gullew* =2 /7|f(x)|2dx (20)

mePs Fean

holds, which means that the Hilbert spaces with the appropriate scalar products are isometric.

Formula (19) is an alternating sine Fourier transform of the function f(x). Formula (18)
gives an inverse transform. Formulae (18) and (19) give the alternating multivariate sine
Fourier transforms corresponding to alternating sine functions SIN,,(x), m € P.

Let £?(F(A2T)) denote the Hilbert space of functions on the domain F(A2T) with the
scalar product

o) = [ AFGar
F (AT
The formulae (18)-(20) show that the set of alternating multivariate sine functions
SIN,,(x), m € P{, forms an orthogonal basis of L*(F (A3)).
Analogous transforms hold for alternating cosine functions COS,,(x), m € P{. Let f(x)
be a symmetric (with respect to the group Aﬁﬁ) continuous real function on the n-dimensional

9
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Euclidean space E,, which has continuous derivatives. We may consider this function as a
function on F(A2T). Then we can expand this function as

f) =Y cpsdet(cos 2rm;x;)} oy = Y cuCOS,, (x). (21)
meP{ meP;
The coefficients ¢, of this expansion are given by the formula
em =22"G | 7! £ (x)COS,, (x) dx. (22)
)
The Plancherel formula is of the form

) |Gm||Cm|2=22”F|f(x)|2dx.
F(A)

meP{

7. Fourier transforms on the fundamental domain F(A,,)

The expansions (18) and (21) of functions on the fundamental domain F (Aﬁff) are expansions
in the sine and cosine functions SIN,, (x) and COS,, (x) with integral m = (m, mo, ..., m,).
The functions SIN; (x) and COS; (x) with A lying in the domain D¢ (and not obligatory
integral) are not invariant with respect to the corresponding affine group A'j‘lff. They are
invariant only with respect to the group A,. The closure of the fundamental domain F(A,)
coincides with the set D¢ consisting of the points x such that x;,x, > x3 = --- > x,. The
functions SIN; (x), A € D, determine a Fourier-type transform on D¢.
We begin with the usual sine Fourier transform on R’:

F) = / £ (x)sin 2w A x| sin 27w Aaxy - - - 8in 27w A, X, dix, (23)
R

Fx) =22 | FO)sin2mwA x; sin 27w Aoxy - - - sin 2w A, X, dA. (24)
R}

Let the function f(x), given on R, be invariant with respect to the alternating group A,, that
is, f(wx) = f(x), w € A,. The function f (1) is also invariant with respect to A,:

f(wk) = / f(x)sin2m (wA)xy - - - sin 2w (W), x, dx
R}
= / f(x)sin2mw A (w’lx)l ---sin2mw A, (wilx)nd(wflx)
R}
= f(wx)sin2w A xy -+ -sin 2w A, x, dx = f(k). (25)
R}

Replace A by wi, w € A,, on both sides of (23) and then sum up these both sides over w € A,,.
Due to the expression (2) for alternating sine functions SIN; (x), instead of (23) we obtain

F) = |An|*IA f)SIN,(x)dx = | f(x)SIN; (x)dx, L e D, (26)
! D

where we have taken into account that f(x) is invariant with respect to A,,.
Starting from (24), we obtain the inverse formula,

fx)y=22" [ F(A)SIN,(x)dx. 27)

DS

10
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For the transforms (26) and (27) the Plancherel formula
/ |fOOPdx =2 / | F )P da
Ds DS

holds. The formulae (26) and (27) determine the alternating multivariate sine Fourier
transforms on the domain F (A,).
The cosine functions COS; (x) determine similar transforms. Namely, we have

Ff) = f(x)COS; (x)dx, where f(x) =2* | F(1)COS; (x)dx. (28)
D¢ D¢

The corresponding Plancherel formula holds.

8. Discrete one-dimensional cosine transforms

Discrete one-dimensional sine and cosine transforms are useful for applications. The theory
of these transforms as well as their different applications and methods of work with them are
given in [19] (see also [20]). In this section, we give these one-dimensional transforms in the
form which will be used in the following sections.

In [19], the discrete cosine transforms are denoted as DCT-1, DCT-2, DCT-3, DCT-4. Let
us expose all these transforms, conserving notations used in the literature on signal processing.
They are determined by a positive integer N.

DCT-1. This transform is given by the kernel

k
e where k,re{0,1,2,....N) (29)

N

2\ /2
,u'r(k)=\/crck<ﬁ) cos

where ¢; = % for k = 0, N and ¢; = 1 otherwise. The matrix (u, (k))i\,]k:o is orthogonal.
Therefore, the orthogonality relation for these discrete functions is given by

2 wrk wr'k .
— Cr COS —— COS =c, 8. 30)
N prd N N

Thus, these functions give the expansion
N N

k 2, k
Fk) =" a, cos % where a, = ; 3 e f (k) cos % 31)

r=0 k=0

DCT-2. This transform is given by the kernel

N2 w(r+ bk
wr(k)ch_k<N> cos%, where k,r €{0,1,2,...,N — 1},

where ¢, = 1/2 for k = 0 and ¢, = 1 otherwise.
The orthogonality relation for these discrete functions is given by
n(r+%)k 7r(r/+%)k

5 N-1
N kX_; Ck COS N cos N = 8. (32)

These functions determine the expansion

Sk

® lf m(r+ N
f = - a, cos N s where a, =

Z |

N-1 1
3" e f (k) cos W (33)
k=0
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DCT-3. This transform is determined by the kernel
2\ mr(k+3)
r k) = r\ 7 2 s
o (k) = J/c (N) cos N

where k and r run over the values {0, 1,2,..., N — 1} and where ¢, = 1/2 for r = 0 and
¢, = 1 otherwise.
The orthogonality relation for these discrete functions is given by the formula

N—1 k l ’ k l
% Z cos nr(N+ 2) cos mr (N+ 2) = C;IS,,r. (34)
k=0

These functions give the expansion

N-1 - 1
nr(k+ ) 2c, rrr(k+—)
fk . cos ——— 22 he . = k) cos ——— 272 35
fk) = Xgaco N where a N;f()s N (35)
DCT-4. This transform is given by the kernel
2\'/? a(r+3)(k+1
fr(k) — (_) CcoS w’
N N
where k and r run over the values {0, 1,2, ..., N — 1}. The orthogonality relation for these
discrete functions is given by
k+ a(r +3)(k+1
—Z )( 2) o )4 36)
N
These functions determlne the expansion
w(r+3)(k+3) 2 % 7(r+5)(k+3)
fk) = Z a, cos N , where a, = I 2:(; f (k) cos T

(37

Note that there exist also four discrete sine transforms, corresponding to the above discrete
cosine transforms. They are obtained from the cosine transforms by replacing in (31), (33),
(35) and (37) cosines discrete functions by sine discrete functions (see [19]).

9. Alternating multivariate discrete cosine transforms

To each of the finite cosine transforms DCT-1, DCT-2, DCT-3, DCT-4 there corresponds an
alternating multivariate discrete cosine transform. We denote the corresponding transforms
as AMDCT-1, AMDCT-2, AMDCT-3, AMDCT-4. We fix a positive integer N and use the
notation D?v for the subset of the set D}, = Dy X Dy X ... x Dy (n times) with Dy =
{0,1,2,..., N}, consisting of points r = (ry, 12, ...,7,), ¥ € 77", such that

NZzr,nzrz---2r2=20.

The set Fj, = + DY is a grid in the fundamental domain F(A%") of the extended affine
alternating group A2,

The set D}, is obtained by action by elements of the group A, upon D;’V, that is, D},
coincides with the set {wb” ;w e A, } However, in {wf)” ;w e A, } some points are met
several times. Namely, a point ko € DN is met |Ak0| times in the set {wD"N, w e A, }
where |Ak0‘ is an order of the subgroup Ax, C A, consisting of elements w € A, leaving ko

invariant.

12
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AMDCT-1. We take the finite cosine functions (29) and make multivariate finite cosine
functions by multiplying n copies of these functions:

S My, TSy TM,Sy,
COSy — = COS cos ---COS , (38)

N N N N
where s;,m; € {0,1,2,..., N}. We consider these functions for integers m; such that
N > my,my >m3 > --- > m, > 0 (these n-tuples m = (m, my, ..., m,) are elements of

D"N) and symmetrize them by means of the group A,. As a result, we obtain a finite version
of the alternating multivariate cosine function (3):
Tromki  wryeks TTFwmykn
cos -+ - COS
N N N

COS{" (k) := |A,[7"* > cos

weA,

b l‘k A\
— 14, ?sdet (cos L) , (39)
i,j=1
where k = (ki, kp, ..., k,), ki € {0,1,2,..., N}, and where A, is the subgroup of A,
consisting of elements leaving r invariant. (We have here expressions cos ”Z{,kf ,notcos 2mrik;
asin (3).

A scalar product of functions (38) is determined by

n
S S Tm;s; TS
COSm v COSpy v = l_[ cos N , COS N

i=1

n N ’ n
Tm;S; Tm;s; N 1 1
= 1_[ E €y 08— 008 —u— = | =) € o cy, Sm,m'» (40)

i=15=0

where we have taken into account formula (30). Since functions COSEA) (s) are linear
combinations of functions cosyy %, then a scalar product for COSI(III) (s) is also defined.

Proposition 1. Form, m’ € D}ﬁ,, the discrete functions (39) satisfy the orthogonality relation

(cosPs), cos (s)) = Z ¢sCOSP ()OS (s)

1
seDYy,

N n
= |Anl ) 1As7'cCOSY (5)COSL) (5) = <E) e Am|Smm'» 1)
seDy,
where ¢s = ¢y, Cy, - - €5, and c, are such as in formula (29).

Proof. Due to the orthogonality relation for the cosine functions cos Zrk (see formula (30) we

N
have

n N
A w(i)i
3" ¢COoSP (s)COSL) () = ﬁ > TTXC e cos =22 cos

seDy, weA, i=1 s5;=0

N n
= |Anl| (3) Con' S (42)

where (my1y, My@)s - - ., My@)) 1S obtained from (m;,m,, ..., m,) by action by the
permutation w € A,. Since functions COS{(s) are symmetric with respect to A,, we
have

/
Jme(i)Si
N

> eCOSY ($)COSL)(s) = |Au] D |As| ' ¢,COS (5)COSL) (s).
seDy, seDy,

This proves the proposition. ]
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Let f be a function on Dx or a symmetric (with respect to A,) function on D},. Then it
can be expanded in functions (39) as

f&)= )" a;COS,(k), (43)
reDy,

where the coefficients a, are determined by the formula

clAnl (27) _
ar= |rA | (ﬁ) Z | Akl ™" e f (K)COS, (). (44)
r ke,

The Plancherel formula is

N n
1Anl D 1A el F ORI = <3> > Al

ke Dy, reDy,
A validity of the expansions (43) and (44) follows from the relation (41).

AMDCT-2. This transform is given by the kernel

1
w(ri+5)k; .
COSP (k) = |A,|~sdet (cos %) , reDy ,, (45
i,j=1

where D7, is the set D', with Nreplacedby N —1andk = (ky, ka, ..., k), ki € {0, 1,2, ...,
N — 1}. The orthogonality relation for these kernels is

Ay
(COSP (), COSP (k) = ) 1Al cos® k)cos? k)

r r

— | Ax
keDj,_,
N n
=\ 5 Ar arr” 46
(5 i w0
where ¢ = cc - - ¢, and ¢; are such as in (32).
This transform is given by the formula
fR) =Y aCOSP (k) (47)

yn
reDy_,

where

lAxl (2)" y .
VWAV k; | Akl ™" i f (K)COSP (K).
eDy_,

The corresponding Plancherel formula holds.

AMDCT-3. This transform is given by the kernel

I ki + 1 "

COSY (k) = |A, |~/ ?sdet <Cos %) : (48)
ij=1

where r € Dnzvfr The orthogonality relation for these kernels is

|Anl

(COSP (k). oS (k) = Y mCOS?) (k)COSL (k)
keDy k
. N n
=Cp E |Ap|Ser, (49)

where ¢, = c1¢; - - - ¢, and ¢; are such as in formula (34).

14
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This transform is given by the formula
f) = > aCOSP (k), (50)
reDy,_,

where

crlAnl £ 2\ _
ar=ﬁ(ﬁ> S 14 FRICOSE K.
’ Kkeby

The corresponding Plancherel formula holds.

AMDCT-4. This transform is given by the kernel

7 (ri+5) (ki +3)

COSW(k) = |A,|""/*sdet | cos v , (51)
ij=1
where r € D7, _,. The orthogonality relation for these kernels is
A,
(COS (k), COSY (k) = ) :A_:cosg“) (k)COS (k)
keDl k
N n
=13 |Ar |8y (52)
This transform is given by the formula
k) = a,COSY (k), (53)
r
re[v)}’vfl
where
2\" Al 1
=(=) ==~ A k)COS (k).
ar (N) ] Z | Akl ™" £ (K)COSL (k)
keD},_,
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